
Chaos, Solitons and Fractals 139 (2020) 110287 

Contents lists available at ScienceDirect 

Chaos, Solitons and Fractals 

Nonlinear Science, and Nonequilibrium and Complex Phenomena 

journal homepage: www.elsevier.com/locate/chaos 

Network structure reconstruction with symmetry constraint 

Zihua Hang 

a , Penglin Dai a , ∗, Shanshan Jia 

b , ∗, Zhaofei Yu 

b 

a School of Information Science and Technology, Southwest Jiaotong University, Chengdu 611756, China 
b Department of Computer Science and Technology, Peking University, Beijing 100871, China 

a r t i c l e i n f o 

Article history: 

Received 7 March 2020 

Revised 6 August 2020 

Accepted 8 September 2020 

Available online 25 September 2020 

Keywords: 

Complex network 

Network structure reconstruction 

Compressive sensing 

a b s t r a c t 

Complex networks have been an effective paradigm to represent a variety of complex systems, such as 

social networks, collaborative networks, and biomolecular networks, where network topology is unkown 

in advance and has to be inferred with limited observed measurements. Compressive sensing (CS) theory 

is an efficient technique to achieve accurate network reconstruction in complex networks by formulat- 

ing the problem as a series of convex optimization models and utilizing the sparsity of networks. How- 

ever, previous CS-based works have to solve a large number of convex optimization models, which is 

time-consuming especially when the network scale becomes large. Further, since partial link information 

shared among multiple convex models, data conflict problem may incur when the derived common vari- 

ables are inconsistent, which may badly degrade infer precision. To address the issues above, we propose 

a new model for network reconstruction based on compressive sensing. To be specific, a single convex 

optimization model is formulated for inferring global network structure by combing the series of convex 

optimization models, which can effectively improve computation efficiency. Further, we devise a vector 

to represent the connection states of all the nodes without redundant link information, which is used for 

representing the unkown topology variables in the proposed optimization model based a devised trans- 

formation method. In this way, the proposed model can eliminate data conflict problem and improve infer 

precision. The comprehensive simulation results shows the superiority of the proposed model compared 

with the competitive algorithms under a wide variety of scenarios. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Complex networks have been an effective paradigm to rep- 

esent a variety of complex systems, such as social networks 

1] , transportation networks [2] , collaborative networks [3] , and 

iomolecular networks [4] , etc., where the system is composed of a 

arge number of basic elements, called nodes and the node-to-node 

nteraction relationship determines the network topology. For in- 

tance, international logistics companies use the global traffic net- 

orks to analyze the cost of goods transportation, which can be 

s a strong reference to warehouse site selection and transporta- 

ion route optimization. However, the network topology of these 

omplex networks is always unkown in advance. The popular ap- 

roach to reveal the network structure is to formulate the network 

econstruction problem (NRP) as the system of linear equations by 

erforming time series of interaction activities and observing suf- 

cient interaction measurements, which is known as the inverse 

roblem. When the amount of measured data is sufficient, then 

he network topology can be easily uncovered by computing the 
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nverse matrix. However, in reality, interaction activity observation 

s always time-consuming, especially in some areas, such as biol- 

gy, where the molecular interaction procedure can last for several 

ours, even a few days. It is common that only a few number of 

bservation data are available, which makes it as an ill-posed prob- 

em. Hence, it is nontrivial to address the network structure recon- 

truction problem in the condition of insufficient measurements. 

In the last decades, compressive sensing (CS) has been a main- 

treaming technique for network reconstruction in complex net- 

orks [5] . The basic principle of CS is to transform NRP problem 

nto a convex optimization model, i.e., L 1 -norm minimization prob- 

em based on compressive sensing. The CS is able to precisely infer 

he network structure with only a few number of measured data 

n the condition of sparse network, which can be easily satisfied in 

omplex networks. Various CS-based models have been proposed 

o solve the inverse problem of network reconstruction [6] . Wang 

t al. [7] developed an evolutionary game based model in com- 

lex networks and proposed an efficient approach to reconstruct 

omplex networks from small amounts of interaction data. Bar- 

anca et al. [8] developed a CS-based framework of a pulse-coupled 

onlinear network and reconstructed sparse feed-forward connec- 

ions based on a hidden linear structure intrinsic to the nonlinear 

https://doi.org/10.1016/j.chaos.2020.110287
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2020.110287&domain=pdf
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etwork dynamics. Barranca and Zhou [9] developed a CS-based 

odel of neuronal networks with the ubiquitous sparse connectiv- 

ty structure for reconstructing network connections by measuring 

ndividual neuronal activity in response to a relatively small en- 

emble of random stimuli injected over a short time scale. In addi- 

ion, Han et al. [10] developed a general framework for robust re- 

onstruction from sparse and noisy data by decomposing the task 

f reconstructing the whole network into recovering local struc- 

ures centered at each node based on the lasso, a convex optimiza- 

ion method. Huang et al. [11] transferred the prior knowledge of 

he symmetry of adjacency matrices into a constraint condition for 

he traditional CS method, which only run the optimization process 

nce. However, the dimension of the proposed model still remains 

he same as the traditional CS method, which may result in high 

omputation complexity when the network scale becomes large. 

Based on the observation above, these CS-based models share 

ome common characteristics. First, they formulate the NRP as 

ultiple convex optimization subproblems, where the solution 

o one subproblem corresponds to the link information of one 

ode in complex networks. Second, since each node shares partial 

ink information, partial accessible link information can be shared 

mong multiple subproblems, which can accelerate the computa- 

ion efficiency. However, these common characteristics also brings 

everal critical issues to be addressed. The global network topology 

an only be acquired by completely solving all these convex opti- 

ization subproblems, which is time-consuming especially when 

he network scale becomes large. Particularly, the number of un- 

nown connection states in the optimization model is proportional 

o the quadratic power of the node number, which results in high 

omputation complexity when the network scale becomes large. In 

ddition, data conflict may incur when the derived common link 

nformation of two subproblems is inconsistent. Particularly, when 

he inaccurate link information derived by one subproblem is used 

or structure inferring in the subsequent subproblems, which may 

adly degrade infer precision. 

Based on the motivation above, we propose a new model for 

etwork reconstruction based on compressive sensing. To be spe- 

ific, we first formulate a single convex optimization model for 

lobal network reconstruction by combing the series of linear 

quations, which can effectively im prove the computation effi- 

iency without solving a large number of iteration procedures. Fur- 

her, we devise a new connection state vector to represent the 

lobal structure information without redundant variables and pro- 

ose a transformation method to use the new vector to replace the 

riginal variables in the proposed optimization model, which can 

liminate the data conflict problem occurred in shared common 

ariables and improve infer precision. The comprehensive simula- 

ion results shows the superiority of the proposed model compared 

ith the competitive algorithms under a wide variety of scenarios. 

The rest of the paper is organized as follows. Section 2 intro- 

uces the preliminaries of network reconstruction problem. Then, 

e present the proposed method for network structure infer- 

nce in Section 3 . Comprehensive performance evaluations are 

resented in Section 4 . Finally, the conclusions are discussed in 

ection 5 . 

. Network reconstruction problem 

In this section, we first introduce interaction activity in com- 

lex networks. Then, network reconstruction problem is formally 

ormulated. 

First, various types of interaction activities can be performed in 

omplex networks, such as epidemic spreading [6] , game dynam- 

cs [7] and nonlinear dynamical systems [12] . For simplicity, this 

aper adopts one of the most popular evolutionary game models, 

.e., prisoner’s-dilemma game (PDG) [13] , which is performed with 
2 
ultiple rounds in order to acquire time series of measured inter- 

ction data. 

Specifically, for the PDG model, each node in the complex net- 

ork is regarded as an agent who can choose one of the two 

trategies at each round, cooperation or defection. Then, the de- 

ision of an agent n at t k round is denoted by a two-dimensional 

ector, denoted by s n ( t k ), which can be expressed either as cooper- 

tion 

(
s n (t k ) = (1 , 0) T 

)
or defection 

(
s n (t k ) = (0 , 1) T 

)
. Further, the 

ayoff matrix is formulated as follows. 

 pdg = 

(
p cc , p cd 

p dc , p dd 

)
, (1) 

here p cc and p dd represent the payoff of mutual cooperation and 

utual defection respectively, and the mixed choice of strategies 

ives the cooperator the suckers payoff p cd and the defector the 

emptation p dc . According to the definition of the PDG, we have 

 dc > p cc > p dd > p cd . In this paper, the value of p cc , p cd , p dc , and

 dd are set to 1.0, 0, 1.2, 0, respectively, which is a common setting 

n these literatures [14–16] . 

For the game only with two agents m and n , whose strategies 

re s m 

and s n , then their payoffs are computed as follows. 

 m 

= s T m 

P s n , 

 n = s T n P s m 

. 
(2) 

Then, for the game with multiple agents, all the agents can play 

ith their neighbors and the gained payoff of player n at t k round 

s defined as the summation of all the gained payoffs, which is for- 

ulated as follows. 

 n (t k ) = 

∑ 

∀ m ∈ �n 

s T n (t k ) P s m 

(t k ) , (3) 

here �n is the set of agents neighboring to the agent n . 

After obtaining the current payoff, the agent follows some de- 

igned rules to update its strategy, in order to maximize the pay- 

ff at the next round. The classical strategy update rules include 

he best-take-over rule [17] , the Fermi rule [7] , payoff-difference- 

etermined updating probability [18] and proportional imitation 

ule [19] , etc. In this paper, we adopt the simplest strategy, i.e., 

he random rule for strategy update. Specifically, in each round, 

he agent n randomly selects one agent m from �n and chooses 

he strategy s n ( t k ) as its strategy, which can avoid the overly rapid

onvergence of strategies. 

However, since the network structure is always unkown in ad- 

ance, the set of measured data only includes the gained payoff

nd decision of each agent at each round. Assume that there ex- 

st N agents in the system and let a N -1-dimensional binary vector 

 n = (a n 1 , . . . , a n,n −1 , a n,n +1 , . . . , a nN ) 
T denote the connection state

f agent n to all the agents in the system, where a nm 

= 1 indicates

hat agents n and m are connected. Otherwise, i.e., a nm 

= 0 , they 

re disconnected. Particularly, since a nn equals 0, therefore a nn is 

xcluded in connection vector A n . Accordingly, the payoff function 

f each agent, denoted by Eq. (3) , can be replaced by: 

 n (t k ) = 

N ∑ 

m =1 ,m � = n 
a nm 

s T n (t k ) P s m 

(t k ) , (4) 

here g n ( t ) and s n ( t ), n = 1 , 2 , . . . , N, can be observed at each

ound of PDG game. After performing K rounds of PDG game, for 

ach agent n , we can get series of strategy decisions, i.e., s n ( t 1 ),

 n ( t 2 ), ..., s n ( t K ) and series of payoffs, i.e., g n ( t 1 ), g n ( t 2 ), ..., g n ( t K ),

espectively. On this basis, for each agent n , we can construct the 

ossible payoff matrix and payoff vector, denoted by F n and G n , 

espectively. 

 n = 

⎛ 

⎜ ⎝ 

F n ( t 1 ) 
F n ( t 2 ) 

. . . 

F n ( t K ) 

⎞ 

⎟ ⎠ 

= 

⎛ 

⎜ ⎝ 

f n 1 ( t 1 ) . . . f nN ( t 1 ) 
f n 1 ( t 2 ) . . . f nN ( t 2 ) 

. . . . . . . . . 

f n 1 ( t K ) . . . f nN ( t K ) 

⎞ 

⎟ ⎠ 

, (5) 
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 n = ( g n (t 1 ) , . . . , g n (t k ) , . . . , g n (t K ) ) 
T 
, (6) 

here F n represents possible gained payoff of player n with each 

layer at each round. Specifically, F n ( t k ) is the k th row vector of

atrix F n , expressed as follows: 

 n ( t k ) = ( f n, 1 (t k ) , . . . , f n,n −1 (t k ) , f n,n +1 (t k ) , . . . , f n,N (t k )) , (7)

here f nm 

( t k ) ∈ F n ( t k ) is set to s T n (t k ) P s m 

(t k ) . Since a nn equals to

, then f n,n ( t k ) is excluded. Then, G n represents the series of gains

btained by player n during the K rounds. On this basis, for each 

layer n , the relationship between the payoff vector G n , possible 

ayoff matrix F n and connection vector A n is expressed as follows. 

 n = F n A n . (8) 

According to Eq. (8) , the network reconstruction problem is 

ransformed into solving the linear equation with observed F n and 

 n . Based on theory of linear algebra, the solution of problem is to 

ompute the inverse of matrix F n . When F n is full rank, it is easy to

ompute the inverse F −1 
n . However, in reality, the number of evo- 

utionary round is much smaller than the number of nodes in the 

ystem, i.e., K � N , therefore there exists no inverse of F n . For-

unately, the network in complex system is usually sparse, where 

ompressive sensing can be effectively applied to infer the network 

tructure with insufficient measured data. Then, the global net- 

ork topology can be obtained by solving a series of linear equa- 

ions G n = F n A n , n = 1, 2, ..., N , where the global connection vector

s denoted by A = ( A 

T 
1 , A 

T 
2 , . . . , A 

T 
N ) 

T . The compressive sensing will

e discussed in detail in the following section. 

. Methodology 

In this section, we first introduce the basic principle of com- 

ressive sensing, which infers the global network topology by solv- 

ng a large number of convex optimization sub-problems in an it- 

rative way. On this basis, a transformation method is proposed 

o combine all these sub-problems into an individual optimization 

odel, which eliminates data conflict problem and improve com- 

utation efficiency. 

First, the goal of compressive sensing is to recover the vector X 

rom linear measurements Y and F in the form: 

 = F X , (9) 

here Y is a K 1 -dimension vector and F is a K 1 × K 2 matrix. The

triking advantage of CS is to achieve accurate network reconstruc- 

ion in the condition of that the number of observed measure- 

ents is much less than the number of nodes in the networks, i.e., 

 1 � K 2 and the matrix F satisfies the restricted isometry prop- 

rty (RIP) [20] . Due to the sparsity of complex networks, the RIP 

roperty is usually satisfied. Then, network reconstruction problem 

efined in Eq. (9) is transformed into the following optimization 

odel based on compressive sensing. 

min || X || 0 
s.t. Y = F X , 

(10) 

here || X || 0 is L 0 -norm and defined as the number of non-zero

lements in X . However, due to non-convexity of L 0 -norm, the op- 

imization model defined in Eq. (10) is typically an NP-hard prob- 

em, which cannot be solved in polynomial time. Hence, L 1 norm 

s commonly used instead, which is a convex function and de- 

ned as the summation of absolute value of all the elements, i.e., 

| X || 1 = 

∑ 

∀ x i j ∈ X | x i j | . Then, many effort s have be paid on convex

ptimization based on L 1 -norm for solving network-construction 

roblems in complex networks [10,21] . Hence, the network recon- 

truction problem defined in Eq. (8) can be solved by achieving the 
3 
ptimal solutions of a series of convex optimization models. 

min || A n || 1 
s.t. G n = F n A n , n = 1 , 2 , . . . , N 

(11) 

It is observed that, for any two vectors A n and A m 

, they share

ome common variables. For instance, the element a nm 

∈ A n should 

e equal to the element a mn ∈ A m 

. However, when A n and A m 

re solved in parallel, the data conflict problem can possibly oc- 

ur when the derived value of a nm 

and a mn are inconsistent. To 

vercome this issue, one common approach is to solve the N op- 

imization models in an iterative way. When a fraction of vari- 

bles is accessible in advance, they can be used to reduce the data 

mount for reconstruction in the subsequent optimization models. 

owever, when the number of nodes becomes sufficient large, the 

teration-based approach are time-consuming. Even worse, when 

he solution of common variable in the previous model is not ac- 

urate, the error will propagate through the subsequent equations, 

hich may badly degrade the reconstruction accuracy. 

Therefore, we propose a transformation method to formulate a 

ingle convex optimization model by combining all the N optimiza- 

ion problems and also eliminating the data conflict. Specifically, 

e define a new possible payoff matrix for each t k round, denoted 

y F ′ ( t k ), formulated as follows. 

 

′ (t k ) = 

⎛ 

⎜ ⎝ 

F 1 (t k ) 
F 2 (t k ) 

. . . 

F N (t k ) 

⎞ 

⎟ ⎠ 

= 

⎛ 

⎜ ⎝ 

f 12 (t k ) . . . f 1 N (t k ) 
f 21 (t k ) . . . f 2 N (t k ) 

. . . . . . . . . 

f N1 (t k ) . . . f N N −1 (t k ) 

⎞ 

⎟ ⎠ 

, (12) 

here F ′ ( t k ) is N × N − 1 -dimensional, which consists of all the k th 

ow vectors of F n , n = 1 , 2 , . . . , N. Further, we transform F ′ ( t k ) as

ollows, 

 F 
(
F ′ ( t k ) 

)
= 

⎛ 

⎜ ⎝ 

F 1 ( t k ) 0 . . . 0 

0 F 2 ( t k ) 0 0 

. . . . . . . . . . . . 

0 0 . . . F N ( t k ) 

⎞ 

⎟ ⎠ 

, (13) 

here TF ( F ′ ( t k )) is an N × (N − 1) N-dimensional matrix, k =
 , 2 , . . . , K. Then, we define a global possible payoff matrix by com-

ining all the transformed matrices, expressed as follows, 

 

′ = 

⎛ 

⎜ ⎝ 

T F 
(
F ′ ( t 1 ) 

)
T F 

(
F ′ ( t 2 ) 

)
. . . 

T F 
(
F ′ ( t K ) 

)

⎞ 

⎟ ⎠ 

, (14) 

here F ′ is a KN × (N − 1) N-dimensional matrix. 

Similarly, we define a new gain vector for each t k round, ex- 

ressed as follows, 

 

′ (t k ) = ( g 1 (t k ) , g 2 (t k ) , . . . , g N (t k ) ) 
T 
. (15) 

A global payoff vector is defined by combing all the vectors 

 

′ ( t k ), k = 1 , 2 , . . . ., K, expressed as follows, 

 

′ = 

(
G 

′ T (t 1 ) , G 

′ T (t 2 ) , . . . , G 

′ T (t K ) 
)T 

, (16) 

here G 

′ is a KN -dimensional vector. 

Accordingly, the series of optimization models defined in 

q. (11) are transformed into a single optimization model. 

min || A || 1 
s.t. G 

′ = F ′ A 

(17) 

It is noticed that the dimension of A contains some redundant 

ariables, which not only increase time complexity but also incur 

ata conflict. 

Hence, in the following, we devise a transformation matrix to 

emove these redundant variables. Specifically, we first define a 
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Fig. 1. The time series of the strategies of different agents in a scale-free network 

(A) and a small-world network (B). Red, green, yellow line denotes three individual 

agents and the blue line is the average cooperation rate of all 100 agents. (For in- 

terpretation of the references to color in this figure legend, the reader is referred to 

the web version of this article.) 
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ew connection vector A 

′ as follows, 

A 

′ = 

(
A 

′ 
1 , A 

′ 
2 , . . . , A 

′ 
n , . . . , A 

′ 
N 

)
, 

A 

′ 
n = (a n,n +1 , a n,n +2 , . . . , a n,N ) , 

(18) 

here the matrix A 

′ is a N (N −1) 
2 -dimensional vector. The function- 

lity of the devised transformation matrix, denoted by C , is to build 

 connection between A 

′ and A , i.e., A = C A 

′ . Particularly, C is a

(N − 1) × N (N −1) 
2 -dimensional matrix. Before that, we first formu- 

ate an N × N symmetric matrix, denoted by B = (b i j ) , where the

pper triangular element b ij , j > i , is computed as follows. 

 i j = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

1 i f i = 1 , j = 2 

b i −1 ,N + 1 i f i > 1 , j = i + 1 

b i,i +1 + j − i − 1 i f j > i + 1 

0 , otherwise 

. (19) 

A vector B 

′ is computed by removing the diagonal elements 

rom the matrix B and vectoring the rest elements, which is for- 

ulated as follows, 

 

′ = (b 12 , . . . , b 1 N , b 21 , . . . , b N1 , . . . , b N,N−1 ) , (20)

here the maximum value of elements is equal to N(N − 1) / 2 . By

tilizing the vector B 

′ , each element c ij ∈ C , is computed as follows.

 i j = 

{
1 , i f j == b ′ 

i 
, b ′ 

i 
∈ B 

′ 
, 

0 , otherwise . 
(21) 

Here ∀ i ∈ [1 , N(N − 1)] , ∀ j ∈ [1 , N(N − 1) / 2] . Particularly, c ij in-

icates whether to transform the j th element in A 

′ to the i th ele- 

ent in A or not. 

By replacing A with A 

′ , then the global convex optimization 

odel in Eq. (17) is formally presented as follows. 

min || A 

′ || 1 
s.t. G 

′ = F ′ C A 

′ (22) 

Thus, the network reconstruction problem can be simply solved 

y applying convex optimization tools to achieve the optimal solu- 

ion A 

∗of Eq. (22) . 

. Simulation results 

In this section, we first verify the effectiveness of the proposed 

ethod on two classical types of complex networks: a scale-free 

etwork [22] and a small world network [23] . Then we test the 

obustness of our method by taking into account the measurement 

oise. 

.1. Reconstruct complex networks without noise 

We first generate a scale-free network of 100 nodes and a 

mall-world network of 100 nodes respectively according to the 

ethods in Santos and Pacheco [22] , Watts and Strogatz [23] , and 

hen record the adjacency matrices, agent strategies and fitness 

uring the evolutionary process. Here the adjacency matrices are 

he true value used for evaluating the accuracy of the proposed 

ethod and agent strategies and fitness are used for reconstruct- 

ng the network. Fig. 1 illustrates the time series of the strategies 

or three typical agents, as well as the average cooperation rate of 

ll 100 agents. It can be observed that the network hasn’t reached 

n equilibrium state for the 100 time step. Accordingly, we can use 

he recorded statistics to reconstruct the network. 

Since the values in the adjacency matrix are all continuous val- 

es, we adopt a fixed threshold 0.1 to determine whether the link 

xists. This threshold is also used in paper [16] . Specifically, we as- 

ume that the link exists when a ij is greater than 0.1, otherwise 

t does not exist. We introduce two evaluation metrics, the suc- 

ess rates of existent links (SREL) and nonexistent links (SRNL), 
4 
o quantify the performance of our method. Here SREL is defined 

s the ratio of the number of successfully inferred connections to 

ll the existing connections, and SRNL is defined as the ratio of 

he number of successfully inferred non-connections to all non- 

onnections in the adjacency matrices. We compare our method 

ith the compressive sensing method (CST) [7,10] and the conflict- 

ased method (CBM) [16] . The CST method performs convex op- 

imization to reconstruct the network node by node, whereas the 

BM method incorporates latent constraints to enhance inference 

f network structure. The results are shown in Figs. 2 and 3 . Here

he x-coordinate is the data ratio. It’s defined as the ratio of the 

umber of measurements to the number of agents, which indi- 

ates how much data we need to reconstruct the network. It can 

e seen that the proposed method (red circle) is much better than 

ST (green triangular) and CBM (blue square). When the data ra- 

io is 0.1, our method can achieve good performance. SREL = 0 . 99 

nd SRNL = 0 . 987 for a scale-free network, and SREL = 0 . 997 and

RNL = 0 . 981 for a small-world network. 

We also evaluate the performance of our method with the 

recision-recall (PR) curve and the receiver operating characteris- 

ic (ROC) curve [24] . Specifically, PR curves summarize the trade- 

ff between the true positive rate and the positive predictive value 

or a model by choosing different probability thresholds, whereas 

OC curves summarize the trade-off between the true positive rate 

nd false positive rate for a model by choosing different thresh- 

lds. The area under the PR curve (AUPR) and the area under the 

OC curve (AUROC) are used as aggregate indicators of the algo- 

ithm performance. Note that the larger AUPR pushes the curve 
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Fig. 2. SREL (A) and SRNL (B) curves measuring the performance of our methods in 

a scale-free network. Network size N = 100 . Each data point is obtained by averag- 

ing over 20 network realizations. 

Fig. 3. SREL (A) and SRNL (B) curves measuring the performance of our methods 

in a small-world network. Network size N = 100 . Each data point is obtained by 

averaging over 20 network realizations. 

Table 1 

AUPR measuring the performance of three different methods in 

a scale-free network and a small-world network. 

Scale free network Small-world network 

R = 0 . 1 R = 0 . 2 R = 0 . 1 R = 0 . 2 

CST 0.33 0.9625 0.4276 0.7771 

CBM 0.4011 0.995 0.5896 0.9682 

Our method 0.9974 1 0.9975 0.9999 

Table 2 

AUROC measuring the performance of three different methods in 

a scale-free network and a small-world network. 

Scale free network Small-world network 

R = 0 . 1 = 0 . 2 R = 0 . 1 R = 0 . 2 

CST 0.8105 0.9918 0.8205 0.9271 

CBM 0.8255 0.9974 0.8808 0.9578 

Our method 0.9999 1 0.9999 1 
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5 
owards the upper-right-hand corner and the larger AUROC moves 

he curve towards the upper-left-hand corner. We calculate the re- 

all, precision, FPR and TPR at 30 0 0 thresholds of equal interval 

etween −1 and 2. Based on this, PR and ROC curves are drawn 

nd the corresponding AUPR and AUROC are calculated. Figs. 4 and 

 compare the PR and ROC curves of our method with CST and 

BM. It is found the PR curve and the ROC curve of our method 

red line) are much higher than those of CST (green line) and CBM 

blue line), which indicates our method can achieve better infer 

recision of the existent and non-existent connections than CST 

nd CBM under varying predefined threshold. One also can get 

he same conclusion from AUPR and AURoC in Tables 1 and 2 . 

s shown, our method is far more accurate and efficient than CST 

7,10] and CBM [16] , which is reflected in an increase of AUPR by 

48.67% for a scale-free network and 69.18% for a small-world net- 

ork, and an increase of AUROC by 21.13% for a scale-free network 

nd 13.52% for a small-world network compared with CBM, even 

hen the measured data is insufficient (the data rate is 0.1). Par- 

icularly, AUPR and AUROC of our method has already achieved 1 

n both scale-free and small-world networks when the data rate is 

nly 0.2. Therefore, this set of simulation results demonstrate that 

he proposed method is a very powerful means of reconstructing 

he network structure. 

Figs. 6 and 7 illustrate the original reconstructed values of each 

ossible edge in a scale-free network and a small-world network 

espectively. For enough data, e.g., R = 0 . 4 , there is a vast and clear

ap between existent connections and non-existent connections for 

oth methods, which indicates that both two methods can accu- 

ately infer the connection states. For insufficient data, e.g., R = 0 . 1 ,

he links are difficult to identify with CST due to the mixture of 

econstructed values whereas there is still a clear gap of recon- 

tructed values with our method, ensuring accurate reconstruction. 

In order to analyze how the date rate affect the accuracy, here 

e plot the PR curve and ROC curve with data rate 0.05 (red line) 

nd 0.1 (blue line). The results are shown in Fig. 8 , one can see

hat the reconstruction accuracy increase with the increase of data 

ate. When the data rate equals 0.1, both AUPR and AUROC achieve 

. Thus our method only needs small amount of data to reconstruct 

he network. 

.2. Reconstruct complex networks with noise 

In practice, the observed measurements of the network are of- 

en contaminated with noise. We test the robustness of the pro- 

osed method against varying amplitudes of noise. Specifically, the 

aussian noise is directly added to the payoff vector of node (i.e., 
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Fig. 4. PR curve (A) and ROC curve (B) measuring the performance of our methods in a scale-free network. Network size N = 100 . Date rate R = 0 . 1 . (C) and (D) are the 

same as (A) and (B), but with the data rate R = 0 . 2 . 

Fig. 5. PR curve (A) and ROC curve (B) measuring the performance of our methods in a small-world network. Network size N = 100 . Date rate R = 0 . 1 . (C) and (D) are the 

same as (A) and (B), but with the data rate R = 0 . 2 . 

6 
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Fig. 6. The reconstructed values of elements in A ′ with the proposed method (A) and CST (B) for a scale-free network. 

Fig. 7. The reconstructed values of elements in A ′ with the proposed method (A) and CST (B) for a small-world network. 

Fig. 8. PR and ROC curves for structure identification performance in a scale-free network (A-B) and a small-world network (C-D). 
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 n ), where the noise amplitude increases from 0.5 to 9 with in- 

erval 0.5. Fig. 11 shows average ratio of absolute noise to gain 

f node under scale-free and small-world networks. According to 

ig. 11 , the noise ratio increases from 12.7% to 253.0% in scale-free 

etworks. As shown in Figs. 9 and 10 , the SREL of all the meth-

ds decreases dramatically at first and then slows down when the 
7 
oise amplitude exceeds 4. It is because the average ratio of ab- 

olute noise to gain is higher than 50% with noise amplitude of 4, 

hich indicates a high-level noise and randomizes the gain value 

f each node. It is verified that the SREL of all the methods are 

ess than 40%. However, our method still achieves the best SREL. 

urther, it is noted that our method achieves relative lower SRNL 
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Fig. 9. Effect of noise amplitude on SREL (A) and SRNL (B) in a scale-free network. 

Here we used the network from Fig. 2 . The noise is directly added to the payoff

value of node. Each data point is obtained by averaging over 20 network realiza- 

tions. 

Fig. 10. Effect of noise amplitude on SREL (A) and SRNL (B) in a small-world net- 

work. Here we used the network from Fig. 3 . The noise is directly added to the 

payoff value of node. Each data point is obtained by averaging over 20 network 

realizations. 

t

u

i

t

Fig. 11. The ratio of absolute noise to payoff value of node under scale-free and 

small-world networks. Here we used the network from Figs. 2 and 3 . The noise is 

directly added to the payoff value of node. Each data point is obtained by averaging 

over 20 network realizations. 
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han other two methods but the performance gap is close. Partic- 

larly, the SRNL of three methods still achieves higher than 0.8. It 

s because that most links are non-existent due to the sparsity of 

he networks. 
8 
. Conclusion 

In this paper, we proposed a new convex optimization frame- 

ork of compressed sensing-based network reconstruction in com- 

lex networks with insufficient measured data. To be specific, a 

lobal convex optimization model is formulated to derive the con- 

ection states of all nodes in the network, which eliminates data 

onflict and improves system performance. We conduct the exper- 

ments under two classical complex networks, i.e., the scale-free 

nd small world. The comprehensive results demonstrate the accu- 

acy and robustness of the proposed methods compared with two 

ompetitive algorithms under limited measured data and varying 

mplitudes of noise. 
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